The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La matrice de diffusion Sinclair est définie dans une portée radar fixe. Si une cible radar s'étend dans la direction de la portée, le signal réfléchi ou la matrice de diffusion composée subira une interaction de réflexions multiples. Étant donné que la matrice de diffusion est soumise à des paramètres cibles tels que la forme, la taille, l'orientation, le matériau et aux paramètres radar tels que la fréquence, la polarisation et l'angle d'incidence, il est difficile de spécifier une matrice de diffusion représentative d'une cible générale. Par conséquent, nous choisissons la cible la plus simple, le fil et sa matrice de diffusion pour examiner l'effet des cibles alignées dans la direction de la portée par rapport à la matrice de diffusion composée. Tout d’abord, nous présentons une formule simple pour la matrice de diffusion composée de fils avec la différence de phase due à l’espacement. Ensuite, nous avons utilisé la méthode FDTD pour examiner les phénomènes de diffusion, en modifiant l'espacement dans la direction de la distance. Le résultat FDTD révèle que deux fils peuvent devenir des générateurs de composants de sphère (plaque) et de réflecteur de coin dièdre (diplan); et que quatre fils peuvent devenir un bon générateur de composants en hélice. Ces phénomènes sont vérifiés par une mesure en laboratoire. À partir du résultat, la décomposition cible doit être effectuée avec soin en termes de portée. Si la résolution de portée d'un radar n'est pas suffisamment élevée, la matrice de diffusion de la cible souhaitée peut être affectée par les cibles situées derrière.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Kenji KITAYAMA, Yoshio YAMAGUCHI, Jian YANG, Hiroyoshi YAMADA, "Compound Scattering Matrix of Targets Aligned in the Range Direction" in IEICE TRANSACTIONS on Communications,
vol. E84-B, no. 1, pp. 81-88, January 2001, doi: .
Abstract: The Sinclair scattering matrix is defined in a fixed radar range. If a radar target extends in the range direction, the reflected signal or the compound scattering matrix will undergo interaction of multiple reflections. Since scattering matrix is subject to target parameters such as shape, size, orientation, material, and radar parameters as frequency, polarization, and incidence angle, it is difficult to specify a representative scattering matrix of a general target. Therefore we choose the simplest target, wire, and its scattering matrix to examine the effect of targets aligned in the range direction with respect to the compound scattering matrix. First, we present a simple formula for the compound scattering matrix of wires with the phase difference due to spacing. Then, we employed the FDTD method to examine the scattering phenomena, changing the spacing in the range direction. The FDTD result reveals that two wires can become sphere (plate) and dihedral corner reflector (diplane) component generators; and that four wires can become a good helix component generator. These phenomena are verified with a laboratory measurement. From the result, the target decomposition should be carefully carried out in terms of range. If a range resolution of a radar is not high enough, the scattering matrix of the desired target may be affected by the targets behind.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e84-b_1_81/_p
Copier
@ARTICLE{e84-b_1_81,
author={Kenji KITAYAMA, Yoshio YAMAGUCHI, Jian YANG, Hiroyoshi YAMADA, },
journal={IEICE TRANSACTIONS on Communications},
title={Compound Scattering Matrix of Targets Aligned in the Range Direction},
year={2001},
volume={E84-B},
number={1},
pages={81-88},
abstract={The Sinclair scattering matrix is defined in a fixed radar range. If a radar target extends in the range direction, the reflected signal or the compound scattering matrix will undergo interaction of multiple reflections. Since scattering matrix is subject to target parameters such as shape, size, orientation, material, and radar parameters as frequency, polarization, and incidence angle, it is difficult to specify a representative scattering matrix of a general target. Therefore we choose the simplest target, wire, and its scattering matrix to examine the effect of targets aligned in the range direction with respect to the compound scattering matrix. First, we present a simple formula for the compound scattering matrix of wires with the phase difference due to spacing. Then, we employed the FDTD method to examine the scattering phenomena, changing the spacing in the range direction. The FDTD result reveals that two wires can become sphere (plate) and dihedral corner reflector (diplane) component generators; and that four wires can become a good helix component generator. These phenomena are verified with a laboratory measurement. From the result, the target decomposition should be carefully carried out in terms of range. If a range resolution of a radar is not high enough, the scattering matrix of the desired target may be affected by the targets behind.},
keywords={},
doi={},
ISSN={},
month={January},}
Copier
TY - JOUR
TI - Compound Scattering Matrix of Targets Aligned in the Range Direction
T2 - IEICE TRANSACTIONS on Communications
SP - 81
EP - 88
AU - Kenji KITAYAMA
AU - Yoshio YAMAGUCHI
AU - Jian YANG
AU - Hiroyoshi YAMADA
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E84-B
IS - 1
JA - IEICE TRANSACTIONS on Communications
Y1 - January 2001
AB - The Sinclair scattering matrix is defined in a fixed radar range. If a radar target extends in the range direction, the reflected signal or the compound scattering matrix will undergo interaction of multiple reflections. Since scattering matrix is subject to target parameters such as shape, size, orientation, material, and radar parameters as frequency, polarization, and incidence angle, it is difficult to specify a representative scattering matrix of a general target. Therefore we choose the simplest target, wire, and its scattering matrix to examine the effect of targets aligned in the range direction with respect to the compound scattering matrix. First, we present a simple formula for the compound scattering matrix of wires with the phase difference due to spacing. Then, we employed the FDTD method to examine the scattering phenomena, changing the spacing in the range direction. The FDTD result reveals that two wires can become sphere (plate) and dihedral corner reflector (diplane) component generators; and that four wires can become a good helix component generator. These phenomena are verified with a laboratory measurement. From the result, the target decomposition should be carefully carried out in terms of range. If a range resolution of a radar is not high enough, the scattering matrix of the desired target may be affected by the targets behind.
ER -