The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Un problème de contrôle d'admission d'appel (CAC) de bout en bout par connexion est résolu dans cet article pour allouer des ressources réseau à une session d'entrée afin de garantir ses exigences de qualité de service (Qos). En conjonction avec la solution du problème CAC, un descripteur de trafic est proposé pour décrire le taux de perte et les exigences de qualité de service liées au délai de la connexion à établir ainsi que les caractéristiques statistiques du trafic d'entrée associé qui est modélisé comme une courbe linéaire. fonction moyenne plus un mouvement brownien fractionnaire (moyen nul). Les informations contenues dans le descripteur de trafic sont suffisantes pour déterminer l'allocation de la bande passante du canal et de l'espace tampon au trafic d'entrée dans un réseau qui utilise des shapers de compartiment à fuite et des algorithmes de planification pour garantir les exigences de qualité de service. Le problème CAC est résolu par un algorithme itératif dont chaque itération comporte deux étapes : l'une est chargée de la recherche d'un chemin de routage candidat de bout en bout et l'autre de la vérification de la légitimité de ce chemin candidat à répondre les exigences de qualité de service et pour l'allocation des ressources selon un chemin aussi légitime.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Yung-Chung WANG, Chung-Chin LU, "End-to-End Call Admission Control in Service Guaranteed Networks" in IEICE TRANSACTIONS on Communications,
vol. E83-B, no. 4, pp. 791-802, April 2000, doi: .
Abstract: A per-connection end-to-end call admission control (CAC) problem is solved in this paper to allocate network resources to an input session to guarantee its quality of service (Qos) requirements. In conjunction with the solution of the CAC problem, a traffic descriptor is proposed to describe the loss rate and the delay bound Qos requirements of the connection to be set up as well as the statistical characteristics of the associated input traffic which is modeled as a linear mean function plus a (zero-mean) fractional Brownian motion. The information in the traffic descriptor is sufficient to determine the allocation of channel bandwidth and buffer space to the input traffic in a network which employs leaky bucket shapers and scheduling algorithms to guarantee the Qos requirements. The CAC problem is solved by an iterative algorithm of which there are two stages in each iteration: one is responsible for the search of a candidate end-to-end routing path and the other for the verification of the legitimacy of this candidate path to meet the Qos requirements and for the allocation of resources in such a legitimate path.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e83-b_4_791/_p
Copier
@ARTICLE{e83-b_4_791,
author={Yung-Chung WANG, Chung-Chin LU, },
journal={IEICE TRANSACTIONS on Communications},
title={End-to-End Call Admission Control in Service Guaranteed Networks},
year={2000},
volume={E83-B},
number={4},
pages={791-802},
abstract={A per-connection end-to-end call admission control (CAC) problem is solved in this paper to allocate network resources to an input session to guarantee its quality of service (Qos) requirements. In conjunction with the solution of the CAC problem, a traffic descriptor is proposed to describe the loss rate and the delay bound Qos requirements of the connection to be set up as well as the statistical characteristics of the associated input traffic which is modeled as a linear mean function plus a (zero-mean) fractional Brownian motion. The information in the traffic descriptor is sufficient to determine the allocation of channel bandwidth and buffer space to the input traffic in a network which employs leaky bucket shapers and scheduling algorithms to guarantee the Qos requirements. The CAC problem is solved by an iterative algorithm of which there are two stages in each iteration: one is responsible for the search of a candidate end-to-end routing path and the other for the verification of the legitimacy of this candidate path to meet the Qos requirements and for the allocation of resources in such a legitimate path.},
keywords={},
doi={},
ISSN={},
month={April},}
Copier
TY - JOUR
TI - End-to-End Call Admission Control in Service Guaranteed Networks
T2 - IEICE TRANSACTIONS on Communications
SP - 791
EP - 802
AU - Yung-Chung WANG
AU - Chung-Chin LU
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E83-B
IS - 4
JA - IEICE TRANSACTIONS on Communications
Y1 - April 2000
AB - A per-connection end-to-end call admission control (CAC) problem is solved in this paper to allocate network resources to an input session to guarantee its quality of service (Qos) requirements. In conjunction with the solution of the CAC problem, a traffic descriptor is proposed to describe the loss rate and the delay bound Qos requirements of the connection to be set up as well as the statistical characteristics of the associated input traffic which is modeled as a linear mean function plus a (zero-mean) fractional Brownian motion. The information in the traffic descriptor is sufficient to determine the allocation of channel bandwidth and buffer space to the input traffic in a network which employs leaky bucket shapers and scheduling algorithms to guarantee the Qos requirements. The CAC problem is solved by an iterative algorithm of which there are two stages in each iteration: one is responsible for the search of a candidate end-to-end routing path and the other for the verification of the legitimacy of this candidate path to meet the Qos requirements and for the allocation of resources in such a legitimate path.
ER -