The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Une nouvelle attribution de canal dynamique basée sur la porteuse pour les systèmes cellulaires FDMA/TDMA, appelée emprunt avec verrouillage directionnel du transporteur stratégie, est proposée dans cet article. Lorsqu'un appel arrive dans une cellule et trouve que tous les canaux vocaux sont occupés, une porteuse composée de plusieurs canaux vocaux peut être empruntée à ses cellules voisines pour acheminer le nouvel appel si un tel emprunt ne viole pas la contrainte d'interférence dans le cocanal. Deux modèles analytiques, l'analyse de découplage de groupes de cellules et l'analyse de cellules fantômes, sont construits pour évaluer les performances de la stratégie proposée. Grâce à l'analyse de découplage de groupe de cellules (CGD), une cellule est découplée avec ses voisines du reste du réseau pour déterminer sa probabilité de blocage d'appel. Contrairement aux approches conventionnelles, le découplage permet de limiter l’analyse à un problème local/de petite taille et ainsi de trouver une solution efficace. Pour un système cellulaire planaire avec un modèle de réutilisation de canaux à trois cellules, l'utilisation de l'analyse CGD implique la résolution de chaînes de Markov à sept dimensions. Cela devient moins efficace à mesure que le nombre de porteuses attribuées à chaque cellule augmente. Pour résoudre ce problème, nous adoptons l'analyse des cellules fantômes qui peut simplifier la chaîne de Markov à sept dimensions en deux chaînes de Markov à trois dimensions. En utilisant l'analyse de cellules fantômes pour déterminer la probabilité de blocage d'appel d'une cellule, deux cellules fantômes sont utilisées pour représenter ses six voisines. Sur la base de résultats numériques approfondis, nous montrons que la stratégie proposée est très efficace dans le partage des ressources entre les stations de base. Pour des charges de trafic faibles à moyennes et un petit nombre de canaux vocaux par opérateur, nous montrons que les deux modèles analytiques fournissent une prédiction précise de la probabilité de blocage des appels système.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Kwan-Lawrence YEUNG, Tak-Shing P. YUM, "Performance Analysis of Borrowing with Directional Carrier Locking Strategy in Cellular Radio Systems" in IEICE TRANSACTIONS on Communications,
vol. E83-B, no. 10, pp. 2394-2401, October 2000, doi: .
Abstract: A new carrier based dynamic channel assignment for FDMA/TDMA cellular systems, called borrowing with directional carrier locking strategy, is proposed in this paper. When a call arrives at a cell and finds all voice channels busy, a carrier which consists of multiple voice channels can be borrowed from its neighboring cells for carrying the new call if such borrowing will not violate the cochannel interference constraint. Two analytical models, cell group decoupling analysis and phantom cell analysis, are constructed for evaluating the performance of the proposed strategy. Using cell group decoupling (CGD) analysis, a cell is decoupled together with its neigbors from the rest of the network for finding its call blocking probability. Unlike conventional approaches, decoupling enables the analysis to be confined to a local/small problem size and thus efficient solution can be found. For a planar cellular system with three-cell channel reuse pattern, using CGD analysis involves solving of seven-dimenional Markov chains. It becomes less efficient as the number of carriers assigned to each cell increases. To tackle this, we adopt the phantom cell analysis which can simplify the seven-dimensional Markov chain to two three-dimentional Markov chains. Using phantom cell analysis for finding the call blocking probability of a cell, two phantom cells are used to represent its six neighbors. Based on extensive numerical results, we show that the proposed strategy is very efficient in sharing resources among base stations. For low to medium traffic loads and small number of voice channels per carrier, we show that both analytical models provide accurate prediction on the system call blocking probability.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e83-b_10_2394/_p
Copier
@ARTICLE{e83-b_10_2394,
author={Kwan-Lawrence YEUNG, Tak-Shing P. YUM, },
journal={IEICE TRANSACTIONS on Communications},
title={Performance Analysis of Borrowing with Directional Carrier Locking Strategy in Cellular Radio Systems},
year={2000},
volume={E83-B},
number={10},
pages={2394-2401},
abstract={A new carrier based dynamic channel assignment for FDMA/TDMA cellular systems, called borrowing with directional carrier locking strategy, is proposed in this paper. When a call arrives at a cell and finds all voice channels busy, a carrier which consists of multiple voice channels can be borrowed from its neighboring cells for carrying the new call if such borrowing will not violate the cochannel interference constraint. Two analytical models, cell group decoupling analysis and phantom cell analysis, are constructed for evaluating the performance of the proposed strategy. Using cell group decoupling (CGD) analysis, a cell is decoupled together with its neigbors from the rest of the network for finding its call blocking probability. Unlike conventional approaches, decoupling enables the analysis to be confined to a local/small problem size and thus efficient solution can be found. For a planar cellular system with three-cell channel reuse pattern, using CGD analysis involves solving of seven-dimenional Markov chains. It becomes less efficient as the number of carriers assigned to each cell increases. To tackle this, we adopt the phantom cell analysis which can simplify the seven-dimensional Markov chain to two three-dimentional Markov chains. Using phantom cell analysis for finding the call blocking probability of a cell, two phantom cells are used to represent its six neighbors. Based on extensive numerical results, we show that the proposed strategy is very efficient in sharing resources among base stations. For low to medium traffic loads and small number of voice channels per carrier, we show that both analytical models provide accurate prediction on the system call blocking probability.},
keywords={},
doi={},
ISSN={},
month={October},}
Copier
TY - JOUR
TI - Performance Analysis of Borrowing with Directional Carrier Locking Strategy in Cellular Radio Systems
T2 - IEICE TRANSACTIONS on Communications
SP - 2394
EP - 2401
AU - Kwan-Lawrence YEUNG
AU - Tak-Shing P. YUM
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E83-B
IS - 10
JA - IEICE TRANSACTIONS on Communications
Y1 - October 2000
AB - A new carrier based dynamic channel assignment for FDMA/TDMA cellular systems, called borrowing with directional carrier locking strategy, is proposed in this paper. When a call arrives at a cell and finds all voice channels busy, a carrier which consists of multiple voice channels can be borrowed from its neighboring cells for carrying the new call if such borrowing will not violate the cochannel interference constraint. Two analytical models, cell group decoupling analysis and phantom cell analysis, are constructed for evaluating the performance of the proposed strategy. Using cell group decoupling (CGD) analysis, a cell is decoupled together with its neigbors from the rest of the network for finding its call blocking probability. Unlike conventional approaches, decoupling enables the analysis to be confined to a local/small problem size and thus efficient solution can be found. For a planar cellular system with three-cell channel reuse pattern, using CGD analysis involves solving of seven-dimenional Markov chains. It becomes less efficient as the number of carriers assigned to each cell increases. To tackle this, we adopt the phantom cell analysis which can simplify the seven-dimensional Markov chain to two three-dimentional Markov chains. Using phantom cell analysis for finding the call blocking probability of a cell, two phantom cells are used to represent its six neighbors. Based on extensive numerical results, we show that the proposed strategy is very efficient in sharing resources among base stations. For low to medium traffic loads and small number of voice channels per carrier, we show that both analytical models provide accurate prediction on the system call blocking probability.
ER -