The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
L'invention concerne un schéma de codage spectral optique pour les réseaux à accès multiple par répartition en code à fibre optique (FO-CDMA). Le codage spectral est basé sur la pseudo-orthogonalité des codes FO-CDMA correctement écrits dans les dispositifs à réseau de Bragg à fibre (FBG). Pour un signal optique à large bande entrant ayant des composantes spectrales égales aux longueurs d'onde de Bragg conçues du FBG, les composantes spectrales seront réfléchies et codées spectralement avec les codes d'adresse FO-CDMA écrits. Chaque puce spectrale a une longueur d'onde centrale différente et est répartie sur le spectre de la source de lumière entrante. Codes de séquence de longueur maximale (m-codes de séquence) sont choisis comme codes de signature ou d'adresse pour illustrer les processus de codage et de corrélation dans le système FO-CDMA. En attribuant le N changements de cycle d'un seul m-code de séquence à N utilisateurs, nous obtenons un réseau FO-CDMA qui peut théoriquement prendre en charge N utilisateurs simultanés. Pour surmonter le facteur limitant de l'interférence d'accès multiple (MAI) sur les performances du réseau FO-CDMA, un décodeur FBG est configuré sur la base de fonctions de corrélation orthogonale des codes pseudo-orthogonaux adoptés. Un utilisateur de récepteur prévu qui opère sur les fonctions de corrélation orthogonale définies rejettera tout utilisateur interférent et obtiendra une quasi-orthogonalité entre les utilisateurs FO-CDMA dans le réseau. Les problèmes pratiques limitant les performances du réseau, tels que les spectres de sources non aplatis, le retard du chemin optique et les accès aux données asynchrones, sont évalués en termes de taux d'erreur binaire par rapport au nombre d'utilisateurs actifs. Comme prévu, le taux d’erreurs binaires augmentera avec le nombre d’utilisateurs actifs. L'augmentation du paramètre de planéité du signal optique entraînera une probabilité d'erreur moyenne plus faible, puisque nous travaillons dans une partie du spectre optique plus aplati. En revanche, la réduction de la bande passante codée réduira la puissance totale reçue, ce qui nécessitera une résolution plus élevée des réseaux de Bragg à fibre.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Jen-Fa HUANG, Dar-Zu HSU, Yih-Fuh WANG, "Photonic CDMA Networking with Spectrally Pseudo-Orthogonal Coded Fiber Bragg Gratings" in IEICE TRANSACTIONS on Communications,
vol. E83-B, no. 10, pp. 2331-2340, October 2000, doi: .
Abstract: An optical spectral coding scheme is devised for fiber-optic code-division multiple-access (FO-CDMA) networks. The spectral coding is based on the pseudo-orthogonality of FO-CDMA codes properly written in the fiber Bragg grating (FBG) devices. For an incoming broadband optical signal having spectral components equal to the designed Bragg wavelengths of the FBG, the spectral components will be reflected and spectrally coded with the written FO-CDMA address codes. Each spectral chip has different central wavelength and is distributed over the spectrum of the incoming light source. Maximal-length sequence codes (m-sequence codes) are chosen as the signature or address codes to exemplify the coding and correlation processes in the FO-CDMA system. By assigning the N cycle shifts of a single m-sequence code to N users, we get an FO-CDMA network that can theoretically support N simultaneous users. To overcome the limiting factor of multiple-access interference (MAI) on the performance of the FO-CDMA network, an FBG decoder is configured on the basis of orthogonal correlation functions of the adopted pseudo-orthogonal codes. An intended receiver user that operates on the defined orthogonal correlation functions will reject any interfering user and obtain quasi-orthogonality between the FO-CDMA users in the network. Practical limiting issues on networking performance, such as non-flattened source spectra, optical path delay, and asynchronous data accesses, are evaluated in terms of the bit-error-rate versus the number of active users. As expected, the bit-error-rate will increase with the number of active users. Increasing the flatness parameter of optical signal will lead to a lower average error probability, since we are working in a part of the more flattened optical spectrum. In contrast, reducing the encoded bandwidth will reduce the total received power, and this will necessitate higher resolution of fiber Bragg gratings.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e83-b_10_2331/_p
Copier
@ARTICLE{e83-b_10_2331,
author={Jen-Fa HUANG, Dar-Zu HSU, Yih-Fuh WANG, },
journal={IEICE TRANSACTIONS on Communications},
title={Photonic CDMA Networking with Spectrally Pseudo-Orthogonal Coded Fiber Bragg Gratings},
year={2000},
volume={E83-B},
number={10},
pages={2331-2340},
abstract={An optical spectral coding scheme is devised for fiber-optic code-division multiple-access (FO-CDMA) networks. The spectral coding is based on the pseudo-orthogonality of FO-CDMA codes properly written in the fiber Bragg grating (FBG) devices. For an incoming broadband optical signal having spectral components equal to the designed Bragg wavelengths of the FBG, the spectral components will be reflected and spectrally coded with the written FO-CDMA address codes. Each spectral chip has different central wavelength and is distributed over the spectrum of the incoming light source. Maximal-length sequence codes (m-sequence codes) are chosen as the signature or address codes to exemplify the coding and correlation processes in the FO-CDMA system. By assigning the N cycle shifts of a single m-sequence code to N users, we get an FO-CDMA network that can theoretically support N simultaneous users. To overcome the limiting factor of multiple-access interference (MAI) on the performance of the FO-CDMA network, an FBG decoder is configured on the basis of orthogonal correlation functions of the adopted pseudo-orthogonal codes. An intended receiver user that operates on the defined orthogonal correlation functions will reject any interfering user and obtain quasi-orthogonality between the FO-CDMA users in the network. Practical limiting issues on networking performance, such as non-flattened source spectra, optical path delay, and asynchronous data accesses, are evaluated in terms of the bit-error-rate versus the number of active users. As expected, the bit-error-rate will increase with the number of active users. Increasing the flatness parameter of optical signal will lead to a lower average error probability, since we are working in a part of the more flattened optical spectrum. In contrast, reducing the encoded bandwidth will reduce the total received power, and this will necessitate higher resolution of fiber Bragg gratings.},
keywords={},
doi={},
ISSN={},
month={October},}
Copier
TY - JOUR
TI - Photonic CDMA Networking with Spectrally Pseudo-Orthogonal Coded Fiber Bragg Gratings
T2 - IEICE TRANSACTIONS on Communications
SP - 2331
EP - 2340
AU - Jen-Fa HUANG
AU - Dar-Zu HSU
AU - Yih-Fuh WANG
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E83-B
IS - 10
JA - IEICE TRANSACTIONS on Communications
Y1 - October 2000
AB - An optical spectral coding scheme is devised for fiber-optic code-division multiple-access (FO-CDMA) networks. The spectral coding is based on the pseudo-orthogonality of FO-CDMA codes properly written in the fiber Bragg grating (FBG) devices. For an incoming broadband optical signal having spectral components equal to the designed Bragg wavelengths of the FBG, the spectral components will be reflected and spectrally coded with the written FO-CDMA address codes. Each spectral chip has different central wavelength and is distributed over the spectrum of the incoming light source. Maximal-length sequence codes (m-sequence codes) are chosen as the signature or address codes to exemplify the coding and correlation processes in the FO-CDMA system. By assigning the N cycle shifts of a single m-sequence code to N users, we get an FO-CDMA network that can theoretically support N simultaneous users. To overcome the limiting factor of multiple-access interference (MAI) on the performance of the FO-CDMA network, an FBG decoder is configured on the basis of orthogonal correlation functions of the adopted pseudo-orthogonal codes. An intended receiver user that operates on the defined orthogonal correlation functions will reject any interfering user and obtain quasi-orthogonality between the FO-CDMA users in the network. Practical limiting issues on networking performance, such as non-flattened source spectra, optical path delay, and asynchronous data accesses, are evaluated in terms of the bit-error-rate versus the number of active users. As expected, the bit-error-rate will increase with the number of active users. Increasing the flatness parameter of optical signal will lead to a lower average error probability, since we are working in a part of the more flattened optical spectrum. In contrast, reducing the encoded bandwidth will reduce the total received power, and this will necessitate higher resolution of fiber Bragg gratings.
ER -