The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Cet article propose une nouvelle architecture de réseau à haut débit appelée Dynamic Transfer Mode, DTM. A l'entrée du réseau DTM, les adresses de destination telles que les adresses IP sont converties en informations de routage DTM et attachées à l'en-tête du paquet. Dans un réseau DTM, une connexion est établie à la volée en envoyant une série d'identifiants de liaison de routage vers la destination, afin que les transferts de données en rafale, comme le trafic WWW, soient acheminés efficacement. Une connexion entre des nœuds adjacents est créée et libérée dynamiquement pendant la période de transfert en rafale. Cela produit un gain de multiplexage statistique plus élevé et une efficacité de bande passante améliorée par rapport au STM conventionnel. Le multiplexage temporel est utilisé afin d'éviter la gigue de retard ou la perte de cellules, les principaux inconvénients du mode de transfert asynchrone. Cet article analyse les performances d'un réseau DTM et décrit un système de commutation implémenté. Étant donné qu'un réseau DTM utilise le routage source et la commutation STM passive, il simplifie le commutateur de transit principal tout en localisant l'intelligence vers les nœuds périphériques. Un commutateur de transit central simplifié est bien adapté aux futurs réseaux fédérateurs à haut débit.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Naoaki YAMANAKA, Kohei SHIOMOTO, "DTM: Dynamic Transfer Mode Based on Dynamically Assigned Short-Hold Time-Slot Relay" in IEICE TRANSACTIONS on Communications,
vol. E82-B, no. 2, pp. 439-446, February 1999, doi: .
Abstract: This paper proposes a new high-speed network architecture called Dynamic Transfer Mode, DTM. At the entrance of the DTM network, destination addresses such as IP addresses are converted into DTM routing information and attached to the packet header. In a DTM network, a connection is set up on-the-fly by sending a series of routing link identifiers to the destination, so burst data transfers like WWW traffic are efficiently carried. A connection between adjacent nodes is created and released dynamically within the burst transfer period. This yields higher statistical multiplexing gain and improved bandwidth efficiency compared to with conventional STM. Time division multiplexing is utilized so delay jitter or cell loss, the major drawbacks of Asynchronous Transfer Mode, are avoided. This paper analyzes the performance of a DTM network and describes an implemented switching system. Because a DTM network uses source-routing and passive STM switching, it simplifies the core transit switch while localizing intelligence to edge nodes. A simplified core transit switch is well suited for future high-speed backbone networks.
URL: https://global.ieice.org/en_transactions/communications/10.1587/e82-b_2_439/_p
Copier
@ARTICLE{e82-b_2_439,
author={Naoaki YAMANAKA, Kohei SHIOMOTO, },
journal={IEICE TRANSACTIONS on Communications},
title={DTM: Dynamic Transfer Mode Based on Dynamically Assigned Short-Hold Time-Slot Relay},
year={1999},
volume={E82-B},
number={2},
pages={439-446},
abstract={This paper proposes a new high-speed network architecture called Dynamic Transfer Mode, DTM. At the entrance of the DTM network, destination addresses such as IP addresses are converted into DTM routing information and attached to the packet header. In a DTM network, a connection is set up on-the-fly by sending a series of routing link identifiers to the destination, so burst data transfers like WWW traffic are efficiently carried. A connection between adjacent nodes is created and released dynamically within the burst transfer period. This yields higher statistical multiplexing gain and improved bandwidth efficiency compared to with conventional STM. Time division multiplexing is utilized so delay jitter or cell loss, the major drawbacks of Asynchronous Transfer Mode, are avoided. This paper analyzes the performance of a DTM network and describes an implemented switching system. Because a DTM network uses source-routing and passive STM switching, it simplifies the core transit switch while localizing intelligence to edge nodes. A simplified core transit switch is well suited for future high-speed backbone networks.},
keywords={},
doi={},
ISSN={},
month={February},}
Copier
TY - JOUR
TI - DTM: Dynamic Transfer Mode Based on Dynamically Assigned Short-Hold Time-Slot Relay
T2 - IEICE TRANSACTIONS on Communications
SP - 439
EP - 446
AU - Naoaki YAMANAKA
AU - Kohei SHIOMOTO
PY - 1999
DO -
JO - IEICE TRANSACTIONS on Communications
SN -
VL - E82-B
IS - 2
JA - IEICE TRANSACTIONS on Communications
Y1 - February 1999
AB - This paper proposes a new high-speed network architecture called Dynamic Transfer Mode, DTM. At the entrance of the DTM network, destination addresses such as IP addresses are converted into DTM routing information and attached to the packet header. In a DTM network, a connection is set up on-the-fly by sending a series of routing link identifiers to the destination, so burst data transfers like WWW traffic are efficiently carried. A connection between adjacent nodes is created and released dynamically within the burst transfer period. This yields higher statistical multiplexing gain and improved bandwidth efficiency compared to with conventional STM. Time division multiplexing is utilized so delay jitter or cell loss, the major drawbacks of Asynchronous Transfer Mode, are avoided. This paper analyzes the performance of a DTM network and describes an implemented switching system. Because a DTM network uses source-routing and passive STM switching, it simplifies the core transit switch while localizing intelligence to edge nodes. A simplified core transit switch is well suited for future high-speed backbone networks.
ER -