The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Nous étudions le problème de l'allocation conjointe de la puissance de l'émetteur et du récepteur avec le critère d'erreur quadratique moyenne (MSE) minimax pour les transmissions en liaison montante dans un système à accès multiple par répartition en code multiporteuse (MC-CDMA). L'objectif de l'allocation de puissance est de minimiser le MSE maximum parmi tous les utilisateurs dont chacun a une puissance de transmission limitée. Ce problème est un problème d'optimisation non linéaire. En utilisant la méthode du multiplicateur de Lagrange, nous dérivons les conditions de Karush-Kuhn-Tucker (KKT) qui sont nécessaires pour qu'une allocation de puissance soit optimale. Les résultats numériques indiquent que, par rapport au critère MSE total minimum, le critère MSE minimax donne un MSE total plus élevé mais offre un traitement plus équitable entre les utilisateurs. Les avantages du critère minimax MSE sont plus évidents lorsque l’on considère les estimations du taux d’erreur sur les bits (BER). Les résultats numériques montrent que le critère minimax MSE donne un BER maximum inférieur et un BER moyen inférieur. On observe également qu'avec le critère minimax MSE, certains utilisateurs n'émettent pas à pleine puissance. A titre de comparaison, avec le critère MSE total minimum, tous les utilisateurs émettent à pleine puissance. De plus, nous étudions une allocation conjointe robuste de la puissance de l’émetteur et du récepteur lorsque les informations sur l’état du canal (CSI) ne sont pas parfaites. L'erreur CSI est supposée inconnue mais limitée par une valeur déterministe. Ce problème est formulé comme un problème de programmation semi-définie (SDP) avec des contraintes d'inégalité matricielle bilinéaire (BMI). Les résultats numériques montrent que, avec un CSI imparfait, le critère minimax MSE surpasse également le critère minimum total MSE en termes de BER maximum et moyen.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Chirawat KOTCHASARN, Poompat SAENGUDOMLERT, "Joint Transmitter and Receiver Power Allocation under Minimax MSE Criterion with Perfect and Imperfect CSI for MC-CDMA Transmissions" in IEICE TRANSACTIONS on Communications,
vol. E91-B, no. 6, pp. 1970-1979, June 2008, doi: 10.1093/ietcom/e91-b.6.1970.
Abstract: We investigate the problem of joint transmitter and receiver power allocation with the minimax mean square error (MSE) criterion for uplink transmissions in a multi-carrier code division multiple access (MC-CDMA) system. The objective of power allocation is to minimize the maximum MSE among all users each of which has limited transmit power. This problem is a nonlinear optimization problem. Using the Lagrange multiplier method, we derive the Karush-Kuhn-Tucker (KKT) conditions which are necessary for a power allocation to be optimal. Numerical results indicate that, compared to the minimum total MSE criterion, the minimax MSE criterion yields a higher total MSE but provides a fairer treatment across the users. The advantages of the minimax MSE criterion are more evident when we consider the bit error rate (BER) estimates. Numerical results show that the minimax MSE criterion yields a lower maximum BER and a lower average BER. We also observe that, with the minimax MSE criterion, some users do not transmit at full power. For comparison, with the minimum total MSE criterion, all users transmit at full power. In addition, we investigate robust joint transmitter and receiver power allocation where the channel state information (CSI) is not perfect. The CSI error is assumed to be unknown but bounded by a deterministic value. This problem is formulated as a semidefinite programming (SDP) problem with bilinear matrix inequality (BMI) constraints. Numerical results show that, with imperfect CSI, the minimax MSE criterion also outperforms the minimum total MSE criterion in terms of the maximum and average BERs.
URL: https://global.ieice.org/en_transactions/communications/10.1093/ietcom/e91-b.6.1970/_p
Copier
@ARTICLE{e91-b_6_1970,
author={Chirawat KOTCHASARN, Poompat SAENGUDOMLERT, },
journal={IEICE TRANSACTIONS on Communications},
title={Joint Transmitter and Receiver Power Allocation under Minimax MSE Criterion with Perfect and Imperfect CSI for MC-CDMA Transmissions},
year={2008},
volume={E91-B},
number={6},
pages={1970-1979},
abstract={We investigate the problem of joint transmitter and receiver power allocation with the minimax mean square error (MSE) criterion for uplink transmissions in a multi-carrier code division multiple access (MC-CDMA) system. The objective of power allocation is to minimize the maximum MSE among all users each of which has limited transmit power. This problem is a nonlinear optimization problem. Using the Lagrange multiplier method, we derive the Karush-Kuhn-Tucker (KKT) conditions which are necessary for a power allocation to be optimal. Numerical results indicate that, compared to the minimum total MSE criterion, the minimax MSE criterion yields a higher total MSE but provides a fairer treatment across the users. The advantages of the minimax MSE criterion are more evident when we consider the bit error rate (BER) estimates. Numerical results show that the minimax MSE criterion yields a lower maximum BER and a lower average BER. We also observe that, with the minimax MSE criterion, some users do not transmit at full power. For comparison, with the minimum total MSE criterion, all users transmit at full power. In addition, we investigate robust joint transmitter and receiver power allocation where the channel state information (CSI) is not perfect. The CSI error is assumed to be unknown but bounded by a deterministic value. This problem is formulated as a semidefinite programming (SDP) problem with bilinear matrix inequality (BMI) constraints. Numerical results show that, with imperfect CSI, the minimax MSE criterion also outperforms the minimum total MSE criterion in terms of the maximum and average BERs.},
keywords={},
doi={10.1093/ietcom/e91-b.6.1970},
ISSN={1745-1345},
month={June},}
Copier
TY - JOUR
TI - Joint Transmitter and Receiver Power Allocation under Minimax MSE Criterion with Perfect and Imperfect CSI for MC-CDMA Transmissions
T2 - IEICE TRANSACTIONS on Communications
SP - 1970
EP - 1979
AU - Chirawat KOTCHASARN
AU - Poompat SAENGUDOMLERT
PY - 2008
DO - 10.1093/ietcom/e91-b.6.1970
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E91-B
IS - 6
JA - IEICE TRANSACTIONS on Communications
Y1 - June 2008
AB - We investigate the problem of joint transmitter and receiver power allocation with the minimax mean square error (MSE) criterion for uplink transmissions in a multi-carrier code division multiple access (MC-CDMA) system. The objective of power allocation is to minimize the maximum MSE among all users each of which has limited transmit power. This problem is a nonlinear optimization problem. Using the Lagrange multiplier method, we derive the Karush-Kuhn-Tucker (KKT) conditions which are necessary for a power allocation to be optimal. Numerical results indicate that, compared to the minimum total MSE criterion, the minimax MSE criterion yields a higher total MSE but provides a fairer treatment across the users. The advantages of the minimax MSE criterion are more evident when we consider the bit error rate (BER) estimates. Numerical results show that the minimax MSE criterion yields a lower maximum BER and a lower average BER. We also observe that, with the minimax MSE criterion, some users do not transmit at full power. For comparison, with the minimum total MSE criterion, all users transmit at full power. In addition, we investigate robust joint transmitter and receiver power allocation where the channel state information (CSI) is not perfect. The CSI error is assumed to be unknown but bounded by a deterministic value. This problem is formulated as a semidefinite programming (SDP) problem with bilinear matrix inequality (BMI) constraints. Numerical results show that, with imperfect CSI, the minimax MSE criterion also outperforms the minimum total MSE criterion in terms of the maximum and average BERs.
ER -