The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Le codage sur papier sale (DPC) est une stratégie permettant d'atteindre la capacité régionale des canaux de liaison descendante à entrées multiples et sorties multiples (MIMO). Un planificateur DPC offre un débit optimal si les utilisateurs sont sélectionnés en fonction de leur état de file d'attente et de leurs débits actuels. Cependant, le DPC est difficile à mettre en œuvre dans des systèmes pratiques. Une solution, la stratégie de formation de faisceaux à force nulle (ZFBF), a été proposée pour obtenir la même capacité de débit de somme asymptotique que celle du DPC avec une recherche exhaustive sur l'ensemble de l'ensemble des utilisateurs. Certains ordonnanceurs de sélection de groupes d'utilisateurs sous-optimaux avec une complexité réduite basés sur la stratégie ZFBF (ZFBF-SUS) et l'algorithme de planification proportionnel équitable (PF) (PF-ZFBF) ont également été proposés pour améliorer le débit et l'équité entre les utilisateurs, respectivement. Cependant, leur débit n'est pas optimal, l'équité et le débit diminuent si la longueur de la file d'attente de chaque utilisateur est différente en raison de la qualité du canal des utilisateurs. Par conséquent, nous proposons deux algorithmes d’ordonnancement différents : un algorithme d’ordonnancement optimal à débit (ZFBF-TO) et un algorithme d’ordonnancement à complexité réduite (ZFBF-RC). Les deux sont basés sur la stratégie ZFBF et, à chaque créneau horaire, les algorithmes de planification doivent sélectionner certains utilisateurs en fonction de la qualité du canal utilisateur, de la longueur de la file d'attente des utilisateurs et de l'orthogonalité entre les utilisateurs. De plus, les algorithmes proposés doivent produire l'allocation de débit et l'allocation de puissance pour les utilisateurs sélectionnés sur la base d'une méthode de remplissage d'eau modifiée. Nous analysons la complexité des ordonnanceurs et les résultats numériques montrent que ZFBF-RC offre des améliorations de débit et d'équité par rapport aux algorithmes de planification ZFBF-SUS et PF-ZFBF.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Augusto FORONDA, Chikara OHTA, Hisashi TAMAKI, "Scheduling Algorithms for Maximizing Throughput with Zero-Forcing Beamforming in a MIMO Wireless System" in IEICE TRANSACTIONS on Communications,
vol. E91-B, no. 6, pp. 1952-1961, June 2008, doi: 10.1093/ietcom/e91-b.6.1952.
Abstract: Dirty paper coding (DPC) is a strategy to achieve the region capacity of multiple input multiple output (MIMO) downlink channels and a DPC scheduler is throughput optimal if users are selected according to their queue states and current rates. However, DPC is difficult to implement in practical systems. One solution, zero-forcing beamforming (ZFBF) strategy has been proposed to achieve the same asymptotic sum rate capacity as that of DPC with an exhaustive search over the entire user set. Some suboptimal user group selection schedulers with reduced complexity based on ZFBF strategy (ZFBF-SUS) and proportional fair (PF) scheduling algorithm (PF-ZFBF) have also been proposed to enhance the throughput and fairness among the users, respectively. However, they are not throughput optimal, fairness and throughput decrease if each user queue length is different due to different users channel quality. Therefore, we propose two different scheduling algorithms: a throughput optimal scheduling algorithm (ZFBF-TO) and a reduced complexity scheduling algorithm (ZFBF-RC). Both are based on ZFBF strategy and, at every time slot, the scheduling algorithms have to select some users based on user channel quality, user queue length and orthogonality among users. Moreover, the proposed algorithms have to produce the rate allocation and power allocation for the selected users based on a modified water filling method. We analyze the schedulers complexity and numerical results show that ZFBF-RC provides throughput and fairness improvements compared to the ZFBF-SUS and PF-ZFBF scheduling algorithms.
URL: https://global.ieice.org/en_transactions/communications/10.1093/ietcom/e91-b.6.1952/_p
Copier
@ARTICLE{e91-b_6_1952,
author={Augusto FORONDA, Chikara OHTA, Hisashi TAMAKI, },
journal={IEICE TRANSACTIONS on Communications},
title={Scheduling Algorithms for Maximizing Throughput with Zero-Forcing Beamforming in a MIMO Wireless System},
year={2008},
volume={E91-B},
number={6},
pages={1952-1961},
abstract={Dirty paper coding (DPC) is a strategy to achieve the region capacity of multiple input multiple output (MIMO) downlink channels and a DPC scheduler is throughput optimal if users are selected according to their queue states and current rates. However, DPC is difficult to implement in practical systems. One solution, zero-forcing beamforming (ZFBF) strategy has been proposed to achieve the same asymptotic sum rate capacity as that of DPC with an exhaustive search over the entire user set. Some suboptimal user group selection schedulers with reduced complexity based on ZFBF strategy (ZFBF-SUS) and proportional fair (PF) scheduling algorithm (PF-ZFBF) have also been proposed to enhance the throughput and fairness among the users, respectively. However, they are not throughput optimal, fairness and throughput decrease if each user queue length is different due to different users channel quality. Therefore, we propose two different scheduling algorithms: a throughput optimal scheduling algorithm (ZFBF-TO) and a reduced complexity scheduling algorithm (ZFBF-RC). Both are based on ZFBF strategy and, at every time slot, the scheduling algorithms have to select some users based on user channel quality, user queue length and orthogonality among users. Moreover, the proposed algorithms have to produce the rate allocation and power allocation for the selected users based on a modified water filling method. We analyze the schedulers complexity and numerical results show that ZFBF-RC provides throughput and fairness improvements compared to the ZFBF-SUS and PF-ZFBF scheduling algorithms.},
keywords={},
doi={10.1093/ietcom/e91-b.6.1952},
ISSN={1745-1345},
month={June},}
Copier
TY - JOUR
TI - Scheduling Algorithms for Maximizing Throughput with Zero-Forcing Beamforming in a MIMO Wireless System
T2 - IEICE TRANSACTIONS on Communications
SP - 1952
EP - 1961
AU - Augusto FORONDA
AU - Chikara OHTA
AU - Hisashi TAMAKI
PY - 2008
DO - 10.1093/ietcom/e91-b.6.1952
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E91-B
IS - 6
JA - IEICE TRANSACTIONS on Communications
Y1 - June 2008
AB - Dirty paper coding (DPC) is a strategy to achieve the region capacity of multiple input multiple output (MIMO) downlink channels and a DPC scheduler is throughput optimal if users are selected according to their queue states and current rates. However, DPC is difficult to implement in practical systems. One solution, zero-forcing beamforming (ZFBF) strategy has been proposed to achieve the same asymptotic sum rate capacity as that of DPC with an exhaustive search over the entire user set. Some suboptimal user group selection schedulers with reduced complexity based on ZFBF strategy (ZFBF-SUS) and proportional fair (PF) scheduling algorithm (PF-ZFBF) have also been proposed to enhance the throughput and fairness among the users, respectively. However, they are not throughput optimal, fairness and throughput decrease if each user queue length is different due to different users channel quality. Therefore, we propose two different scheduling algorithms: a throughput optimal scheduling algorithm (ZFBF-TO) and a reduced complexity scheduling algorithm (ZFBF-RC). Both are based on ZFBF strategy and, at every time slot, the scheduling algorithms have to select some users based on user channel quality, user queue length and orthogonality among users. Moreover, the proposed algorithms have to produce the rate allocation and power allocation for the selected users based on a modified water filling method. We analyze the schedulers complexity and numerical results show that ZFBF-RC provides throughput and fairness improvements compared to the ZFBF-SUS and PF-ZFBF scheduling algorithms.
ER -