The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
La tension en circuit ouvert (OCV) des appareils électriques est un problème dans divers domaines, dont l'évaluation numérique nécessite un traitement attentif. La structure en circuit ouvert est mal conditionnée en raison du champ électrique singulier aux coins, et la composante TEM du champ électrique doit être extraite avant d'être intégrée pour donner la tension dans la méthode directe d'obtention de l'OCV. Cet article présente les méthodes indirectes pour calculer l'OCV, la méthode de la matrice d'admission et la méthode du théorème de Norton. Les deux méthodes sont basées sur une structure en court-circuit bien conditionnée. Les expressions explicites de l'OCV sont dérivées en termes d'éléments de la matrice d'admittance dans la méthode de la matrice d'admittance, et en termes de courant de court-circuit et d'impédance d'antenne du dispositif électrique considéré dans la méthode du théorème de Norton. Ces deux méthodes sont équivalentes en théorie, mais la méthode de la matrice d'admittance convient aux cas d'émetteurs proches tandis que la méthode du théorème de Norton convient aux cas d'émetteurs distants. Plusieurs exemples sont donnés pour montrer l’utilité de la présente théorie.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Naoki INAGAKI, Katsuyuki FUJII, "Indirect Calculation Methods for Open Circuit Voltages" in IEICE TRANSACTIONS on Communications,
vol. E91-B, no. 6, pp. 1825-1830, June 2008, doi: 10.1093/ietcom/e91-b.6.1825.
Abstract: Open circuit voltage (OCV) of electrical devices is an issue in various fields, whose numerical evaluation needs careful treatment. The open-circuited structure is ill-conditioned because of the singular electric field at the corners, and the TEM component of the electric field has to be extracted before integrated to give the voltage in the direct method of obtaining the OCV. This paper introduces the indirect methods to calculate the OCV, the admittance matrix method and the Norton theorem method. Both methods are based on the short-circuited structure which is well-conditioned. The explicit expressions of the OCV are derived in terms of the admittance matrix elements in the admittance matrix method, and in terms of the short circuit current and the antenna impedance of the electrical device under consideration in the Norton theorem method. These two methods are equivalent in theory, but the admittance matrix method is suitable for the nearby transmitter cases while the Norton theorem method is suitable for the distant transmitter cases. Several examples are given to show the usefulness of the present theory.
URL: https://global.ieice.org/en_transactions/communications/10.1093/ietcom/e91-b.6.1825/_p
Copier
@ARTICLE{e91-b_6_1825,
author={Naoki INAGAKI, Katsuyuki FUJII, },
journal={IEICE TRANSACTIONS on Communications},
title={Indirect Calculation Methods for Open Circuit Voltages},
year={2008},
volume={E91-B},
number={6},
pages={1825-1830},
abstract={Open circuit voltage (OCV) of electrical devices is an issue in various fields, whose numerical evaluation needs careful treatment. The open-circuited structure is ill-conditioned because of the singular electric field at the corners, and the TEM component of the electric field has to be extracted before integrated to give the voltage in the direct method of obtaining the OCV. This paper introduces the indirect methods to calculate the OCV, the admittance matrix method and the Norton theorem method. Both methods are based on the short-circuited structure which is well-conditioned. The explicit expressions of the OCV are derived in terms of the admittance matrix elements in the admittance matrix method, and in terms of the short circuit current and the antenna impedance of the electrical device under consideration in the Norton theorem method. These two methods are equivalent in theory, but the admittance matrix method is suitable for the nearby transmitter cases while the Norton theorem method is suitable for the distant transmitter cases. Several examples are given to show the usefulness of the present theory.},
keywords={},
doi={10.1093/ietcom/e91-b.6.1825},
ISSN={1745-1345},
month={June},}
Copier
TY - JOUR
TI - Indirect Calculation Methods for Open Circuit Voltages
T2 - IEICE TRANSACTIONS on Communications
SP - 1825
EP - 1830
AU - Naoki INAGAKI
AU - Katsuyuki FUJII
PY - 2008
DO - 10.1093/ietcom/e91-b.6.1825
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E91-B
IS - 6
JA - IEICE TRANSACTIONS on Communications
Y1 - June 2008
AB - Open circuit voltage (OCV) of electrical devices is an issue in various fields, whose numerical evaluation needs careful treatment. The open-circuited structure is ill-conditioned because of the singular electric field at the corners, and the TEM component of the electric field has to be extracted before integrated to give the voltage in the direct method of obtaining the OCV. This paper introduces the indirect methods to calculate the OCV, the admittance matrix method and the Norton theorem method. Both methods are based on the short-circuited structure which is well-conditioned. The explicit expressions of the OCV are derived in terms of the admittance matrix elements in the admittance matrix method, and in terms of the short circuit current and the antenna impedance of the electrical device under consideration in the Norton theorem method. These two methods are equivalent in theory, but the admittance matrix method is suitable for the nearby transmitter cases while the Norton theorem method is suitable for the distant transmitter cases. Several examples are given to show the usefulness of the present theory.
ER -