The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
En raison de la complexité informatique du détecteur optimal de vraisemblance maximale (OMD) qui augmente de façon exponentielle avec le nombre d’utilisateurs, les techniques sous-optimales ont reçu une attention particulière. Nous avons proposé l'optimisation par essaim de particules (PSO) pour la détection multi-utilisateurs (MUD) dans un système à accès multiple par répartition en code multiporteuse asynchrone (MC-CDMA). Les performances du MUD basé sur PSO sont presque optimales, tandis que sa complexité de calcul est bien inférieure à celle de l'OMD. Il a également été démontré que les performances du PSO-MUD sont meilleures que celles du MUD basé sur un algorithme génétique (GA-MUD) au SNR pratique.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Muhammad ZUBAIR, Muhammad A.S. CHOUDHRY, Aqdas NAVEED, Ijaz Mansoor QURESHI, "Multiuser Detection for Asynchronous Multicarrier CDMA Using Particle Swarm Optimization" in IEICE TRANSACTIONS on Communications,
vol. E91-B, no. 5, pp. 1636-1639, May 2008, doi: 10.1093/ietcom/e91-b.5.1636.
Abstract: Due to the computational complexity of the optimum maximum likelihood detector (OMD) growing exponentially with the number of users, suboptimum techniques have received significant attention. We have proposed the particle swarm optimization (PSO) for the multiuser detection (MUD) in asynchronous multicarrier code division multiple access (MC-CDMA) system. The performance of PSO based MUD is near optimum, while its computational complexity is far less than OMD. Performance of PSO-MUD has also been shown to be better than that of genetic algorithm based MUD (GA-MUD) at practical SNR.
URL: https://global.ieice.org/en_transactions/communications/10.1093/ietcom/e91-b.5.1636/_p
Copier
@ARTICLE{e91-b_5_1636,
author={Muhammad ZUBAIR, Muhammad A.S. CHOUDHRY, Aqdas NAVEED, Ijaz Mansoor QURESHI, },
journal={IEICE TRANSACTIONS on Communications},
title={Multiuser Detection for Asynchronous Multicarrier CDMA Using Particle Swarm Optimization},
year={2008},
volume={E91-B},
number={5},
pages={1636-1639},
abstract={Due to the computational complexity of the optimum maximum likelihood detector (OMD) growing exponentially with the number of users, suboptimum techniques have received significant attention. We have proposed the particle swarm optimization (PSO) for the multiuser detection (MUD) in asynchronous multicarrier code division multiple access (MC-CDMA) system. The performance of PSO based MUD is near optimum, while its computational complexity is far less than OMD. Performance of PSO-MUD has also been shown to be better than that of genetic algorithm based MUD (GA-MUD) at practical SNR.},
keywords={},
doi={10.1093/ietcom/e91-b.5.1636},
ISSN={1745-1345},
month={May},}
Copier
TY - JOUR
TI - Multiuser Detection for Asynchronous Multicarrier CDMA Using Particle Swarm Optimization
T2 - IEICE TRANSACTIONS on Communications
SP - 1636
EP - 1639
AU - Muhammad ZUBAIR
AU - Muhammad A.S. CHOUDHRY
AU - Aqdas NAVEED
AU - Ijaz Mansoor QURESHI
PY - 2008
DO - 10.1093/ietcom/e91-b.5.1636
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E91-B
IS - 5
JA - IEICE TRANSACTIONS on Communications
Y1 - May 2008
AB - Due to the computational complexity of the optimum maximum likelihood detector (OMD) growing exponentially with the number of users, suboptimum techniques have received significant attention. We have proposed the particle swarm optimization (PSO) for the multiuser detection (MUD) in asynchronous multicarrier code division multiple access (MC-CDMA) system. The performance of PSO based MUD is near optimum, while its computational complexity is far less than OMD. Performance of PSO-MUD has also been shown to be better than that of genetic algorithm based MUD (GA-MUD) at practical SNR.
ER -