The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
Récemment, les services multimédias se sont multipliés avec l'utilisation généralisée de diverses applications sans fil telles que les navigateurs Web, la vidéo en temps réel et les jeux interactifs, ce qui entraîne une asymétrie du trafic entre la liaison montante et la liaison descendante. Par conséquent, les systèmes de duplexage par répartition dans le temps (TDD), qui offrent des avantages en matière d'utilisation efficace de la bande passante dans des environnements de trafic asymétrique, sont devenus l'un des problèmes les plus importants des futurs systèmes cellulaires mobiles. On sait que deux types d'interférences intercellulaires, appelées interférences entre fentes croisées, plus surgissent dans les systèmes TDD ; les performances des transmissions en liaison montante et en liaison descendante sont dégradées respectivement par une interférence entre fentes croisées BS et une interférence entre fentes croisées MS vers MS. Le déséquilibre des performances qui en résulte entre la liaison montante et la liaison descendante rend le déploiement du réseau très inefficace. Des travaux antérieurs ont proposé des algorithmes intelligents d’allocation de créneaux temporels pour atténuer le problème d’interférence entre créneaux horaires. Cependant, ils nécessitent un contrôle centralisé, ce qui entraîne une surcharge de signalisation importante dans le réseau. Dans cet article, nous proposons de modifier la forme de la structure cellulaire elle-même. La structure cellulaire conventionnelle se transforme facilement en structure cellulaire proposée avec des antennes de réception distribuées (DRA). Nous mettons en place un modèle statistique de trafic en chaîne de Markov et analysons les performances d'erreur sur les bits de la structure cellulaire conventionnelle et de la structure cellulaire proposée dans des environnements de trafic asymétriques. Les résultats numériques montrent que les performances de liaison montante et descendante de la structure cellulaire proposée s'équilibrent avec le nombre approprié de DRA et que la structure cellulaire proposée est donc particulièrement rentable en termes de déploiement de réseau par rapport à la structure cellulaire conventionnelle. En conséquence, l’extension de la structure cellulaire conventionnelle à la structure cellulaire proposée avec des DRA constitue une solution remarquablement rentable pour prendre en charge les environnements de trafic asymétriques dans les futurs systèmes cellulaires mobiles.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copier
Illsoo SOHN, Byong Ok LEE, Kwang Bok LEE, "Balancing Uplink and Downlink under Asymmetric Traffic Environments Using Distributed Receive Antennas" in IEICE TRANSACTIONS on Communications,
vol. E91-B, no. 10, pp. 3141-3148, October 2008, doi: 10.1093/ietcom/e91-b.10.3141.
Abstract: Recently, multimedia services are increasing with the widespread use of various wireless applications such as web browsers, real-time video, and interactive games, which results in traffic asymmetry between the uplink and downlink. Hence, time division duplex (TDD) systems which provide advantages in efficient bandwidth utilization under asymmetric traffic environments have become one of the most important issues in future mobile cellular systems. It is known that two types of intercell interference, referred to as crossed-slot interference, additionally arise in TDD systems; the performances of the uplink and downlink transmissions are degraded by BS-to-BS crossed-slot interference and MS-to-MS crossed-slot interference, respectively. The resulting performance unbalance between the uplink and downlink makes network deployment severely inefficient. Previous works have proposed intelligent time slot allocation algorithms to mitigate the crossed-slot interference problem. However, they require centralized control, which causes large signaling overhead in the network. In this paper, we propose to change the shape of the cellular structure itself. The conventional cellular structure is easily transformed into the proposed cellular structure with distributed receive antennas (DRAs). We set up statistical Markov chain traffic model and analyze the bit error performances of the conventional cellular structure and proposed cellular structure under asymmetric traffic environments. Numerical results show that the uplink and downlink performances of the proposed cellular structure become balanced with the proper number of DRAs and thus the proposed cellular structure is notably cost-effective in network deployment compared to the conventional cellular structure. As a result, extending the conventional cellular structure into the proposed cellular structure with DRAs is a remarkably cost-effective solution to support asymmetric traffic environments in future mobile cellular systems.
URL: https://global.ieice.org/en_transactions/communications/10.1093/ietcom/e91-b.10.3141/_p
Copier
@ARTICLE{e91-b_10_3141,
author={Illsoo SOHN, Byong Ok LEE, Kwang Bok LEE, },
journal={IEICE TRANSACTIONS on Communications},
title={Balancing Uplink and Downlink under Asymmetric Traffic Environments Using Distributed Receive Antennas},
year={2008},
volume={E91-B},
number={10},
pages={3141-3148},
abstract={Recently, multimedia services are increasing with the widespread use of various wireless applications such as web browsers, real-time video, and interactive games, which results in traffic asymmetry between the uplink and downlink. Hence, time division duplex (TDD) systems which provide advantages in efficient bandwidth utilization under asymmetric traffic environments have become one of the most important issues in future mobile cellular systems. It is known that two types of intercell interference, referred to as crossed-slot interference, additionally arise in TDD systems; the performances of the uplink and downlink transmissions are degraded by BS-to-BS crossed-slot interference and MS-to-MS crossed-slot interference, respectively. The resulting performance unbalance between the uplink and downlink makes network deployment severely inefficient. Previous works have proposed intelligent time slot allocation algorithms to mitigate the crossed-slot interference problem. However, they require centralized control, which causes large signaling overhead in the network. In this paper, we propose to change the shape of the cellular structure itself. The conventional cellular structure is easily transformed into the proposed cellular structure with distributed receive antennas (DRAs). We set up statistical Markov chain traffic model and analyze the bit error performances of the conventional cellular structure and proposed cellular structure under asymmetric traffic environments. Numerical results show that the uplink and downlink performances of the proposed cellular structure become balanced with the proper number of DRAs and thus the proposed cellular structure is notably cost-effective in network deployment compared to the conventional cellular structure. As a result, extending the conventional cellular structure into the proposed cellular structure with DRAs is a remarkably cost-effective solution to support asymmetric traffic environments in future mobile cellular systems.},
keywords={},
doi={10.1093/ietcom/e91-b.10.3141},
ISSN={1745-1345},
month={October},}
Copier
TY - JOUR
TI - Balancing Uplink and Downlink under Asymmetric Traffic Environments Using Distributed Receive Antennas
T2 - IEICE TRANSACTIONS on Communications
SP - 3141
EP - 3148
AU - Illsoo SOHN
AU - Byong Ok LEE
AU - Kwang Bok LEE
PY - 2008
DO - 10.1093/ietcom/e91-b.10.3141
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E91-B
IS - 10
JA - IEICE TRANSACTIONS on Communications
Y1 - October 2008
AB - Recently, multimedia services are increasing with the widespread use of various wireless applications such as web browsers, real-time video, and interactive games, which results in traffic asymmetry between the uplink and downlink. Hence, time division duplex (TDD) systems which provide advantages in efficient bandwidth utilization under asymmetric traffic environments have become one of the most important issues in future mobile cellular systems. It is known that two types of intercell interference, referred to as crossed-slot interference, additionally arise in TDD systems; the performances of the uplink and downlink transmissions are degraded by BS-to-BS crossed-slot interference and MS-to-MS crossed-slot interference, respectively. The resulting performance unbalance between the uplink and downlink makes network deployment severely inefficient. Previous works have proposed intelligent time slot allocation algorithms to mitigate the crossed-slot interference problem. However, they require centralized control, which causes large signaling overhead in the network. In this paper, we propose to change the shape of the cellular structure itself. The conventional cellular structure is easily transformed into the proposed cellular structure with distributed receive antennas (DRAs). We set up statistical Markov chain traffic model and analyze the bit error performances of the conventional cellular structure and proposed cellular structure under asymmetric traffic environments. Numerical results show that the uplink and downlink performances of the proposed cellular structure become balanced with the proper number of DRAs and thus the proposed cellular structure is notably cost-effective in network deployment compared to the conventional cellular structure. As a result, extending the conventional cellular structure into the proposed cellular structure with DRAs is a remarkably cost-effective solution to support asymmetric traffic environments in future mobile cellular systems.
ER -